Transport.TS

Transport Trend Analysis

CRAN_Status_Badge Total Downloads Downloads Lifecycle:Retired License: MIT

Overview

This project leverages the IATA and ICAO Codes API to develop an interactive R Shiny web application. The app enables users to search, analyze, and visualize global airport and airline data. By integrating API-driven data retrieval with advanced data manipulation and visualization techniques, the project provides an intuitive platform for exploring global airport information, featuring dynamic charts and interactive visuals to enhance user experience.

Installation

Use the below API to be able to download the endpoints into your desired dataframe using Rapid API

library(httr)
library(jsonlite)

# Function to get data from the API
get_airport_data <- function(query, api_key) {
  url <- paste0("https://vacationist.p.rapidapi.com/", query)
  response <- GET(url, add_headers(
    "X-RapidAPI-Key" = api_key,
    "X-RapidAPI-Host" = "vacationist.p.rapidapi.com"
  ))
  content <- content(response, as = "text")
  data <- fromJSON(content, flatten = TRUE)
  return(data)
}

# Example: Fetching airports
api_key <- "YOUR_API_KEY"
airport_data <- get_airport_data("airports", api_key)
print(airport_data)

Usage

Plotting time series data

library(TSstudio)
data(USgas)

# Ploting time series object
ts_plot(USgas, 
        title = "US Monthly Natural Gas Consumption",
        Ytitle = "Billion Cubic Feet")

Seasonality analysis

# Seasonal plot
ts_seasonal(USgas, type = "all")


# Heatmap plot

ts_heatmap(USgas)

Correlation analysis

# ACF and PACF plots
ts_cor(USgas, lag.max = 60)

# Lags plot
ts_lags(USgas, lags = 1:12)

# Seasonal lags plot
ts_lags(USgas, lags = c(12, 24, 36, 48))

Training forecasting models

# Forecasting applications
# Setting training and testing partitions
USgas_s <- ts_split(ts.obj = USgas, sample.out = 12)
train <- USgas_s$train
test <- USgas_s$test

# Forecasting with auto.arima
library(forecast)
md <- auto.arima(train)
fc <- forecast(md, h = 12)

# Plotting actual vs. fitted and forecasted
test_forecast(actual = USgas, forecast.obj = fc, test = test)

# Plotting the forecast 
plot_forecast(fc)

# Run horse race between multiple models
methods <- list(ets1 = list(method = "ets",
                            method_arg = list(opt.crit = "lik"),
                            notes = "ETS model with opt.crit = lik"),
                ets2 = list(method = "ets",
                            method_arg = list(opt.crit = "amse"),
                            notes = "ETS model with opt.crit = amse"),
                arima1 = list(method = "arima",
                              method_arg = list(order = c(2,1,0)),
                              notes = "ARIMA(2,1,0)"),
                arima2 = list(method = "arima",
                              method_arg = list(order = c(2,1,2),
                                                seasonal = list(order = c(1,1,1))),
                              notes = "SARIMA(2,1,2)(1,1,1)"),
                hw = list(method = "HoltWinters",
                          method_arg = NULL,
                          notes = "HoltWinters Model"),
                tslm = list(method = "tslm",
                            method_arg = list(formula = input ~ trend + season),
                            notes = "tslm model with trend and seasonal components"))
# Training the models with backtesting
md <- train_model(input = USgas,
                  methods = methods,
                  train_method = list(partitions = 6, 
                                      sample.out = 12, 
                                      space = 3),
                  horizon = 12,
                  error = "MAPE")
# A tibble: 6 x 7
  model_id model       notes                                         avg_mape avg_rmse `avg_coverage_80%` `avg_coverage_95%`
  <chr>    <chr>       <chr>                                            <dbl>    <dbl>              <dbl>              <dbl>
1 arima2   arima       SARIMA(2,1,2)(1,1,1)                            0.0557     167.              0.583              0.806
2 hw       HoltWinters HoltWinters Model                               0.0563     163.              0.736              0.889
3 ets1     ets         ETS model with opt.crit = lik                   0.0611     172.              0.681              0.903
4 ets2     ets         ETS model with opt.crit = amse                  0.0666     186.              0.458              0.833
5 tslm     tslm        tslm model with trend and seasonal components   0.0767     220.              0.417              0.667
6 arima1   arima       ARIMA(2,1,0)                                    0.188      598.              0.875              0.958

# Plot the performance of the different models on the testing partitions
plot_model(md)

# Holt-Winters tunning parameters with grid search
hw_grid <- ts_grid(USgas, 
                   model = "HoltWinters",
                   periods = 6,
                   window_space = 6,
                   window_test = 12,
                   hyper_params = list(alpha = seq(0,1,0.1),
                                       beta = seq(0,1,0.1),
                                       gamma = seq(0,1,0.1)))
                                       
plot_grid(hw_grid, type = "3D")